Nusselt-Rossby scaling in high-frequency harmonic modulation of rotating Rayleigh-Bénard convection

Bernard J. Geurts ${ }^{* \dagger}$, Liesbeth Klein Kranenbarg*, C.P.J. (Stijn) Peereboom ${ }^{\dagger}$ and Rudie P.J. Kunnen ${ }^{\dagger}$

We examine the phenomenon of rotating Rayleigh-Bénard convection with a timevarying rotation rate, referred to as mRRB, which introduces a shaking turbulence effect. By introducing a time-dependent rotation rate in the cylindrical domain, the buoyancy-driven dynamics of Rayleigh-Bénard convection is modified by the effect of rotation and the Euler force resulting from time-dependent rotation. The magnitude of the Euler force depends on the frequency and amplitude of the modulation, and it acts only in the circumferential direction, inducing a global structuring of the otherwise turbulent flow.

We report on Direct Numerical Simulation (DNS) results obtained in a cylindrical domain with height and diameter $H=D=1$, filled with water and operated at a Rayleigh number $R a=10^{8}$. We investigate the impact of the modulation amplitude $\Delta \Omega$, characterized by a Rossby number $R o^{*} \sim 1 / \Delta \Omega$, at two modulation frequencies ω, characterized by a separate Rossby number $R o_{\omega} \sim 1 / \omega$. Our findings (figure 1) show a remarkable increase in the Nusselt number $N u$ compared to the non-rotating case, which is largely independent of $R o_{\omega}$ and reaches an asymptotic regime where $N u \sim\left(R o^{*}\right)^{0.5}$.

The observed enhancement in heat transfer is attributed to efficient mixing at the top and bottom plates of the cylinder and a significant temperature gradient near the sidewalls at half height. The flow is dominated by the formation of a prominent pair of stacked toroidal convection rolls that are intimately linked to the efficiency of heat transfer in this regime.

Figure 1: (a) Time signals of the Nusselt number. Modulated rotation is applied from $t=200$. Black: non-rotational; Magenta: $R o^{*}=0.2 ;$ Green: $R o^{*}=0.1 ;$ Red: $R o^{*}=0.05$; Blue: $R o^{*}=0.02$. (b) Nusselt versus $1 / R o^{*}$ for $R o_{\omega}=0.2$ (blue squares) and $R o_{\omega}=0.1$ (red circles). Horizontal line: Nusselt number for the non-rotating situation; Dashed line: $N u \sim\left(R o^{*}\right)^{0.5}$.

[^0]
[^0]: *3MS, Department of Applied Mathematics, University of Twente, The Netherlands
 ${ }^{\dagger}$ Department of Applied Physics, Eindhoven University of Technology, The Netherlands

