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Accurate surrogate models of turbulent simulations can be used for tasks that
require many function evaluations and fast inference such as design optimization and
control. Recent advances on Deep Learning have opened the opportunity for learning
data-driven surrogate models of turbulent flows with better accuracy and generality
than other reduced-order modeling techniques 1. However, one of the limitations of
Deep Learning methods is on maintaining numerical stability over long-time horizons.
In this work we propose a framework to enforce numerical stability, by adding regular-
ization terms to the loss function based on the diffusion, advection and time-derivative
of the Navier-Stokes equation. Also, we employ a method of adding perturbations
to the inputs of our models, known as the push-forward method 2. This results in a
optimization objective (see eq. 1) with multiple terms where the weight of each term
plays an important role.

Ltotal = λdataLMSE + λdiffLdiff + λadvLadv + λDt
LDt

+ λpfLpf (1)

In order to find the right balance of terms of the loss function, we employ a
hyperparameter tuning strategy based on Bayesian optimization 3. We tested our
framework on different Neural Network architectures: Autoencoder - LSTM 4, U-NET
5 and Fourier Neural Operators 6, trained for regression of a 2D Kolmogorov Flow 7

(see a sample of results on fig. 1). We observe that this strategy improves the results
of the aforementioned models, meaning this can be applied to other architectures
developed in the future.

Figure 1: Predictions made by a Neural Operator model at different time-steps.
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