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The use of Machine Learning (ML) for learning turbulent models is an active re-
search topic and presents promising opportunities for improving CFD models1. The
training of such data-driven models often relies on well-resolved data. In the case of
Reynolds-Averaged Navier-Stokes (RANS) models, these data typically correspond
to full mean flows from scale-resolving simulations1. This may form a bottleneck
to gather large datasets and train ML models for complex flow configurations espe-
cially for unsteady turbulence models (e.g. URANS), as the training would require
unsteady data and at various conditions (in terms of Reynolds number, geometry,
. . . ). In the present work, we investigate the possibility in learning unsteady model
corrections based on limited data, i.e. data that are sparse in space and/or in time,
thus relaxing the need of performing expensive high-fidelity simulations and possibly
paving the way for the use of experimental data to train ML (turbulence) models.

Figure 1: Expectation (green), Max-
imization (red), EM (black), model
prediction (blue) and target model
(pink) errors monitoring over EM it-
eration.

Based on the methodological contribution2,
we here rely on Data Assimilation (DA) tech-
niques like Ensemble Klaman Filter (EnKF)
to bridge the limited data with the ML
phase. In this paper the DA method is used
to correct a corrupted Ginzburg-Landau
(GL) model prediction (said as a baseline
model) from sparse observations, providing a
full state to train a ML model in order to im-
prove the baseline model. By evaluating the
Expected-Maximization (EM) algorithm on
a GL model, we can assess its potential and
limitations in modeling turbulent unsteady
flows from sparse and noisy observations. In
Fig 1 the EM algorithm has shown good re-
sults in dealing with sparse observations, of-
fering an opportunity to implement this ap-
proach for correcting Large Eddy Simulation

(LES) and URANS models using Direct Numerical Simulation (DNS). Its ability to
handle complex and nonlinear models makes it a promising candidate for improving
the accuracy of these models in real-world applications.
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