Sub-Hinze bubble production in turbulence

S. Perrard^{*}, A. Rivière^{*}, D. J. Ruth[‡], W. Mostert^{†§}, L. Duchemin^{*}, C. Josserand[¶]L. Deike^{†∥}

Liquid-gas flows play a central role in the transfert of low solubility gases, such as CO2, from the atmosphere to the ocean 12 . Indeed, when a wave breaks, it traps large volumes of air that will fragment and generate sub-millimetric bubbles. This fragmentation dynamics is controlled by the Weber number We, the ratio between inertial force and capillary force. A critical break up size, the Kolmogorov-Hinze scale d_h corresponding to a Weber of order unity separates stable bubbles $(d \ll d_h)$ from bubbles that will surely break $(d \gg d_h)$. The sub-Hinze bubbles in particular rise slower to the surface, and dissolve faster into the ocean. However, the understanding of sub-millimetric bubble productions remains challenging: these bubbles are produced from the break up of much larger ones, throughout highly non-linear processes ${}^{3}, {}^{4}, {}^{5}$. We use direct numerical simulations in both homogeneous isotropic turbulence and in an extensional flow to built a population model, going from the fate of individual filaments to the multi-scale break-up statistics of large bubbles in turbulence. Combining numerical and experimental, I will show how that sub-Hinze bubble size distribution originates from the break-up of gas filaments, on a timescale controlled by capillarity instability.

^{*}ESPCI, CNRS, PSL University, Sorbonne-U., UPC., Paris, France, EU [†]Mechanical & Aerospace Engineering, Princeton U., US

[‡]ETH Zurich, Switzerland

[§]Oxford University, UK

 $[\]P LadHyX,$ Ecole Polytechnique, CNRS, Palaiseau, France, EU

High Meadows Environmental Institute, Princeton U., US

¹L. Deike, Annual Review of Fluid Mechanics,**54**, 191-224 (2022)

 $^{^2\}mathrm{B.}$ G. Reichl & L. Deike, Geophysical Research Letters, 47, (2020)

³Rivière et al., *Phys. Rev. Fluids* 7 (2022)

⁴Rivière et al., Journal of Fluid Mechanics **917** (2021)

⁵D. J. Ruth et al., Journal of Fluid Mechanics **924** (2021)