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A new mathematical formalism that exploits the property of quasi-linear systems
to self-tune towards marginally stable states is investigated and applied to the 2D
strongly stratified flow problem. The asymptotic analysis of the Boussinesq equa-
tions in the limit of strong stratification naturally yields a multiscale reduced model
where small-scale instabilities evolve linearly about a large-scale hydrostatic field and
modify it via a nonlinear feedback term.1 A recently introduced mathematical for-
malism for the integration of slow-fast QL systems exploits the tendency of these
systems to self-organize about a marginal stability manifold and slaves the amplitude
of the (marginal) fluctuations to the slowly-evolving mean field.12

An interesting feature of this reduced system is the two-ways coupling between the
slow and the fast dynamics: the feedback produced by the fluctuations on the mean
variable is not sign-definite and its effect may be stabilizing or destabilizing in nature.
Here, we address two important extensions to this formalism. The first extension ac-
commodates large-amplitude bursting events, in which temporal scale separation is
transiently lost, requiring the co-evolution of the slow and the fast fields on the same
temporal scale until marginal stability is re-established. The second extension yields
a slow evolution equation for the wavenumber of the fastest growing mode, whose
amplitude is then slaved to the mean field dynamics in condition of marginal stabil-
ity to maintain a zero growth rate. Together, these extensions enable scale-selective
adaptivity in both space and time. Our formalism is consistent with the idea that
shear flow turbulence tracks low-dimensional state space structures (marginally sta-
ble manifolds) during slow evolutionary phases punctuated by intermittent bursting
events.
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