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In 1981, Frisch and Morf1 postulated the existence of complex singularities in solutions
of Navier-Stokes equations. Since then, it was mathematically confirmed in the one-
dimensional Burgers equation, a 1D surrogate of the Navier-Stokes equation, where
complex singularities collapse to the real axes in the inviscid limit. When a viscosity
ν is added, the singularities are repelled from the real axis, the closest one being
constantly at a distance O(ν3/4) of the real line. In 3D, progress on the conjectured
existence of complex singularities is impeded by the computational burden involved
in the simulation of the Euler or Navier-Stokes equations at a high Reynolds number.

We investigate this conjecture in the case of fluid dynamics on log-lattice2, where
the computational burden is logarithmic concerning ordinary fluid. We analyse prop-
erties of potential complex singularities in both 1D and 3D for lattices of different
steps. Dominant complex singularities are tracked using the singularity strip method,
which is based on the observation that the behaviour of the energy spectrum at large
wavenumber k is dominated by the position of the singularity closest to the real axis
and decays like exp(2δk), where δ is the imaginary part of the corresponding singular-
ity. Fitting the large wavenumber tail of the energy spectrum as a function of time,
one then gets an estimate of δ(t), and real singularity occurs when δ(t) = 0. So far,
studies have only identified an exponential decaying regime for δ(t), meaning no finite
time blow-up by extrapolation. However, we cannot guarantee that this extrapolation
is correct due to numerical limitations.

In the first part, we validate the close connection between fluid dynamics on log-
lattice and real fluid dynamics by focusing on the 1D Burgers equation, where dom-
inant complex singularities are tracked using the singularity strip method. In the
second part, we extend this technique to 3D to obtain new scaling regarding the
approach to the real axis and the influence of normal, hypo and hyper dissipation
(Fig. 1).

Figure 1: Width of analycity strip 2δ as a function of viscosity, for stationary dynamics for
Navier-Stokes, for hypo-viscous case (blue circle), viscous case (red squares), hyper-viscous
case (yellow diamond).
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