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The velocity gradient, A = ∇u, contains comprehensive information on the small
scales in turbulence. Modelling approaches aim at obtaining a low-dimensional de-
scription to provide insights into the turbulent dynamics.1 Machine learning (ML) is
promising in producing reduced-order models for the velocity gradient, thanks to its
capabilities in forecasting time series.2 Given direct numerical simulation (DNS) data,
ML-based models can be used, for example, to (a priori) learn stochastic differential
equations to model (a posteriori) Lagrangian velocity gradients.3 To what extent suc-
cessful a-priori training yields quantitatively faithful a-posteriori predictions remains
an open question.
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Figure 1: PDF of the velocity gradient prin-
cipal invariants. The colour map and coloured
contours (logarithmically equispaced) are from
the DNS, while the black contours result from
our ML-based model.

Here we use ML to construct velocity
gradient models that match given tur-
bulence statistics by design. We employ
normalizing flow models4 to accurately
approximate the single-time velocity-
gradient probability density function
(PDF) through subsequent changes of
variables. Based on that, we formu-
late a Fokker-Planck equation for the
velocity-gradient PDF that yields the
learned PDF by construction. The as-
sociated Langevin equation can be used
to generate Lagrangian velocity gra-
dient trajectories whose time correla-
tions can be controlled by gauge terms
that leave the single-time statistics un-
changed. The resulting model quanti-
tatively captures the velocity-gradient
statistics obtained from DNS of incom-
pressible, statistically isotropic turbu-
lence at a high Reynolds number.
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