On forward-backward dispersion in anisotropic turbulence

<u>S. Gallon</u>^{*}, F. Feraco^{\dagger}[†], A. Sozza^{*}, R. Marino^{\dagger} and A. Pumir^{*§}

We are interested in the dispersion of groups of particles in turbulence, which has been thoroughly studied in the case of homogeneous isotropic turbulence (HIT)¹ or in rotating flows (ROT, Coriolis frequency, f)². We are considering here flows with both rotation and stable stratification (STRAT, Brunt-Väisälä frequency, N). For its oceanographic relevance³, we chose the ratio N/f = 5. In such flows, a transition from eddy-dominated ($R_{\rm IB} > 1$) to wave-dominated ($R_{\rm IB} < 1$) flows was observed⁴ when decreasing the Reynolds-Buoyancy number, defined as $R_{\rm IB} = \langle \omega^2 \rangle / N^2$.

We analyze the dispersion of pairs of particles forward and backwards in time and compare their dispersion statistics with theoretical predictions of the energy budget generalizing the Kármán–Howarth-Monin equation⁵. Starting with pairs of particles with a given initial separation $||\mathbf{X}_2(0) - \mathbf{X}_1(0)|| = R_0$, we determine the variance of the change of separation, $\langle \delta R^2(t) \rangle = \langle (\mathbf{R}(t) - \mathbf{R}_0)^2 \rangle$. The time antisymmetric part, $\langle \delta R^2(-t) - \delta R^2(t) \rangle \approx -2 \langle \delta_{\mathbf{R}_0} \mathbf{A}(0) \cdot \delta_{\mathbf{R}_0} \mathbf{U}(0) \rangle t^3 = -2 (-2\varepsilon_{\nu} + N \langle \delta_{\mathbf{R}_0} \theta(0) \delta_{\mathbf{R}_0} U_z(0) \rangle)$, where $\delta_{\mathbf{R}_0} \mathbf{A}(0), \delta_{\mathbf{R}_0} \theta(0), \delta_{\mathbf{R}_0} U_z(0)$ are the initial values of the pairs relative acceleration, velocity, buoyancy and vertical velocity. This Lagrangian generalization of the 4/5-law includes an energy exchange between kinetic and potential energy. Fig.1 reveals that, despite the exchange term, the time anti-symmetric part reaches a plateau, essentially independent of the scale R_0 , down to $R_{IB} \sim 1$ (wave dominated regime). We are exploring the implications of this observation.

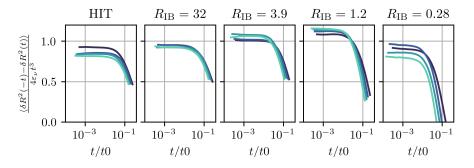


Figure 1: The time antisymmetric part of $\langle \delta R^2(t) \rangle$ compensated by $4\varepsilon_{\nu}t^3$ for HIT and 4 different ROTSTRAT with decreasing $R_{\rm IB}$. Colors indicate the initial separation of the pairs ranging form 40η (dark blue) to 70η (light green).

^{*}Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

[†]Univ Lyon, CNRS, École Centrale de Lyon, INSA de Lyon, Univ Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique - UMR 5509, F-69134 Écully, France

[‡]Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany [§]Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

¹F. Toschi et al. Ann.Rev.Fluid Mech. **41**, 1 (2009)

 $^{^2 \}mathrm{J.}$ Polanco et al., Phys. Rev. Fluids $\mathbf{8},\,034602$ (2023)

³A. C. N. Garabato et al., *Science* **303**, 5655 (2004)

⁴D. Buaria et al., *Phys. Rev. Fluids* **5**, 064801 (2020)

⁵A. Sozza et al., *Physics of Fluids* **27**, 035112 (2015)