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Important problems for the theory of turbulence are related to the spontaneous de-
velopment of localized structures in the vicinity of boundaries. This is the case of
finite time singularities at walls in ideal flow, the boundary layer detachment, and
the convergence of the Navier-Stokes solutions to Euler’s. While those mathematical
questions remain open, numerical simulations play an important role in their investi-
gation. Despite the great advances in recent years, the limited resolution of current
computational techniques appears to be insufficient for the accurate investigation of
the finest structures of the flow.

As an alternative way, it has been proposed to model extremely fine scales by
considering Fourier wave vectors in logarithmic lattices1. In this framework, the re-
sulting models are structurally the same as the original ones, they preserve the group
of symmetries and invariants, but can be simulated over impressively large spatial
ranges. The technique has been successfully applied to fluids filling the whole Eu-
clidean space2. However, since only Fourier variables are available, it is not straight-
forward how to consider boundaries within the flow.

In this talk, we show how to model flows with boundaries in the logarithmic lattice
formalism. The strategy is to model the wall as a discontinuity surface immersed in
the flow, which is extended to the whole euclidean space by a mirror symmetry.
In this way, we can work with Fourier variables, and so with logarithmic lattices.
The discontinuities in the field variables give rise to localized shear forces in the
governing equations, which can be exactly solved from the system. We show how
this approach reproduces some properties of classical shear flows. When applied to
the 2D Navier-Stokes equations, we reach incredibly large Reynolds numbers and
have access to extremely fine scales of the flow. We verify a transition to turbulence
and the appearance of sharp bumps in energy dissipation. Despite the incredibly high
Reynolds numbers from our simulations, we argue that is still difficult to give a proper
answer about the possible convergence to the Euler flow.
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