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The stagnation-point-type solution to the 3D incompressible Navier-Stokes equations
found in' produced an infinite family of solutions to the 3D incompressible Euler
equations that blow up in a finite time. There is an exact formula for the singularity
time as a functional of the initial conditions?34, and the solutions to this and related
models are best understood in terms of infinitesimal Lie symmetries®. The main
drawback of these solutions, from the viewpoint of the Clay Millennium Prize, is that
the velocity field depends linearly on the out-of-plane spatial coordinate, and thus the
initial condition has infinite energy. In this talk, I will present a way to extend these
solutions in order to have an arbitrary dependence on the out-of-plane coordinate,
allowing in principle for finite-energy solutions. This extension seems to break the
infinitesimal Lie symmetry structure inherent to the previous infinite-energy solutions,
so a statement regarding finite-time blowup is not yet available analytically in the
finite-energy case. However, the extension allows for a novel numerical attempt at
the finite-energy solution, via a hierarchy of systems of coupled 2D partial differential
equations, which are much easier to handle than a full 3D problem. I will present
results and prospects, and discuss potential applications to real-life experiments.

To illustrate the challenges faced, figure 1 shows snapshots of a well-resolved sim-
ulation corresponding to a scenario of helical vortices with theoretically no finite-time
blowup, but whose small scales become unresolved eventually at any given resolution.

Figure 1: Snapshots, at different times, of the symmetry-plane vorticity field of a pseu-
dospectral simulation (N = 2562) of the 3D Euler fluid equations (Gibbon-Fokas-Doering
ansatz), for the case of initial conditions v = sin(y — 7/2) (vorticity stretching rate) and
wo = [1 4+ 2sin(y — w/2)] cos(z + 7/2) (vorticity).
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