Thermal waves and heat transfer efficiency enhancement in harmonically modulated turbulent thermal convection

<u>P. Urban</u>^a, T. Králík^a, V. Musilová^a, P. Hanzelka^a, D. Schmoranzer^b and L. Skrbek^b

Turbulent Rayleigh-Bénard convection (RBC) serves as the paradigmatic system for studies of various forms of turbulent thermal convection.¹ We observe and discuss (i) significant heat transfer enhancement and (ii) thermal waves propagating through a turbulent fluid layer when the top or bottom boundary temperature harmonically oscillates (Figure 1)². Such experimental observations, enabled by our unique, thermally fast cryogenic apparatus², help to better understand Sun-driven atmospheric and ocean natural flows forming planetary weather and climate or to design more efficient heat exchangers for various technical applications.

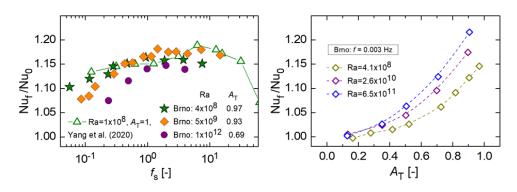


Figure 1: Harmonic modulation of boundary temperatures significantly increases the heat transport efficiency by turbulent thermal convection by up to 20%: (a) Relative heat transport efficiency Nu_f/Nu₀ plotted versus dimensionless modulation frequency f_s for different values of the turbulent convection intensity represented by the Rayleigh number, Ra, where Nu₀ represents the heat transport efficiency at constant temperatures of the top and bottom boundaries. (b) Dependence of Nu_f/Nu₀ on the dimensionless amplitude of modulation $A_T = T_{mod}/\Delta T$, where T_{mod} is the harmonic modulation amplitude of the top plate and ΔT denotes the mean temperature difference between the plates. Dimensionless quantities allow direct comparison of our experimental data with numerical prediction³.

This research is funded by the Czech Science Foundation under GA 20-00918S.

^a The Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic

^a Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague, Czech Republic

¹ Chilla and Schumacher, Eur. Phys. J. E 35, 58 (2012).

² Urban et al., Phys. Rev. Lett. (2022).

³ Yang et al., Phys. Rev. Lett. 125, 154502 (2020).