Reynolds-number effects on the outer region of adverse-pressure-gradient turbulent boundary layers

Aron van den Bogaard[‡], Ricardo Vinuesa[†], Ivan Marusic[‡]and Rahul Deshpande[‡]

Adverse-pressure-gradient (APG) turbulent boundary layers (TBL) typically have a pronounced 'outer' region as compared to their zero-pressure-gradient (ZPG) counterparts, which is in part owing to the increase in wall-normal convection of turbulence by the PG¹. Both large²- and small-scale³ motions are known to be energised in this region. This understanding, however, is based on studies limited to low Reynolds numbers (Re_{τ} \leq 2000) and has been hypothesized to differ at larger Re_{τ}^{-1} .

To this end, the present study investigates APG TBLs over a decade of Re_{τ} . Data for $500 \leq \text{Re}_{\tau} \leq 2000$ were taken from high-fidelity simulations³, with $\beta \sim 1.4$, while new data at $\text{Re}_{\tau} \sim 7000$ and similar β are obtained via hotwire anemometry in the Melbourne wind tunnel. Figure 1 details the set-up established for these experiments.

Spectral analysis of this database, at nearly-constant β , reveals that small-scale contributions decrease in the outer region with increasing Re_{τ} . This is also confirmed by investigating the velocity variance for various computational grids and hotwire spatial resolutions, where the spatial-filtering error is found to decrease with increasing Re_{τ} . The study, hence, suggests negligible spatial filtering when measuring in the outer region of low-to-moderate APG TBLs at high Re_{τ} (\geq 3000), thereby setting the stage for future high-Re_{\tau} experiments aimed at establishing accurate scalings.

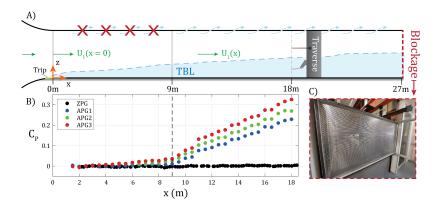


Figure 1: (A) Schematic of the wind tunnel (not to scale). The test-section outlet is choked by multiple mesh screens (porosity ~51%). Air bleeds on the ceiling are also choked for the first 8m to maintain a ZPG, after which a constant PG is allowed to form. (B) The pressure coefficient C_P (and β) is varied by changing the number of screens (C) to 0, 1, 2 and 3 (ZPG, APG1, APG2 and APG3, respectively).

^{*}Physics of Fluids Group, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands *FLOW, Eng. Mech., KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

[‡]Dept. of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia

¹Vinuesa et al., Int. J. Heat Fluid Flow 72, 86 (2018)

²Harun et al., J. Fluid Mech. **715**, 477 (2013)

³Pozuelo et al., J. Fluid Mech. **939**, A34 (2022)