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Adverse-pressure-gradient (APG) turbulent boundary layers (TBL) typically have
a pronounced ‘outer’ region as compared to their zero-pressure-gradient (ZPG) coun-
terparts, which is in part owing to the increase in wall-normal convection of turbulence
by the PG1. Both large2- and small-scale3 motions are known to be energised in this
region. This understanding, however, is based on studies limited to low Reynolds
numbers (Reτ ≤ 2000) and has been hypothesized to differ at larger Reτ

1.
To this end, the present study investigates APG TBLs over a decade of Reτ . Data

for 500 ≤ Reτ ≤ 2000 were taken from high-fidelity simulations3, with β ∼ 1.4, while
new data at Reτ ∼ 7000 and similar β are obtained via hotwire anemometry in the
Melbourne wind tunnel. Figure 1 details the set-up established for these experiments.

Spectral analysis of this database, at nearly-constant β, reveals that small-scale
contributions decrease in the outer region with increasing Reτ . This is also confirmed
by investigating the velocity variance for various computational grids and hotwire
spatial resolutions, where the spatial-filtering error is found to decrease with increasing
Reτ . The study, hence, suggests negligible spatial filtering when measuring in the
outer region of low-to-moderate APG TBLs at high Reτ (≥ 3000), thereby setting
the stage for future high-Reτ experiments aimed at establishing accurate scalings.

Figure 1: (A) Schematic of the wind tunnel (not to scale). The test-section outlet is choked
by multiple mesh screens (porosity ∼51%). Air bleeds on the ceiling are also choked for the
first 8m to maintain a ZPG, after which a constant PG is allowed to form. (B) The pressure
coefficient CP (and β) is varied by changing the number of screens (C) to 0, 1, 2 and 3 (ZPG,
APG1, APG2 and APG3, respectively).
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