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In this study, with the assistance of deep learning (DL), we present a framework for 
predicting turbulent eddy viscosity in unsteady Reynolds-averaged Navier–Stokes 
(URANS) simulations for particle-laden flows. A complete workflow is illustrated 
from the identification of input flow and particle quantities to the final prediction of 
the instantaneous flow velocities. The framework incorporates a deep neural network 
model, also known as multi-layer perceptrons (MLP), into the momentum equations 
of the Euler–Lagrangian gas–solid flow system. A data-driven, physics-informed DL 
approach is employed to predict the modelled turbulent eddy viscosities, which are 
formulated as functions of the instantaneous flow and particle quantities. In the 
training phase, such eddy viscosity functions are trained by the existing high-fidelity 
direct numerical simulation database. In the testing phase, they are then used to 
predict the instantaneous local eddy viscosity to update the closure term and to solve 
the URANS equations iteratively. That is to say, the DL prediction is performed every 
timestep in the URANS solver. The velocity and pressure fields of turbulence, as well 
as the particle motions, are solved iteratively until their residuals converge to the given 
tolerance within each timestep.  
 

Assessments of the model are performed for round, turbulent particle-laden jet 
flows with various Stokes numbers to represent practical computational fluid 
dynamics applications. Here, the Stokes number characterises the ratio of the particle 
response time to the fluid response time of the flow system. For the URANS of such 
nonhomogeneous flows, the proper input flow features (i.e., the instantaneous flow 
quantities) and the effective form of the closure term (i.e., the turbulent eddy 
viscosity) are discussed to identify the suitable training input and target variables for 
the DL model. In such an identification process, the physical domain knowledge is 
considered to establish a proper regression system. The proposed DL–URANS model 
is found to provide enhanced capability in predicting the flow and particle quantities 
compared with the baseline URANS simulations. Finally, the a posteriori tests using 
different flow parameters and different classes of flows are performed to evaluate the 
robustness of the DL-URANS framework. 
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