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In three-dimensional Navier-Stokes turbulence, energy is injected at a large scale L
and is efficiently transported to small scales. In this process, the fluid reaches a state of
finite variance and large spatial gradients, which can be approximately described by a
rough velocity field of Hölder exponent H ≈ 1/3. Motivated by this phenomenon, this
work describes a stochastic partial differential equation (SPDE) for a d-dimensional
scalar field u that is randomly stirred by a spatially smooth and uncorrelated in time
forcing term. Previous studies 12 described how fractional complex fields in one spatial
dimension can be obtained through the action of a linear transport operator. This
construction is formalized and extended to arbitrary dimensions with the following
transport equation in Fourier space,

∂tû(t, k) + divk

(
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û(t, k) = f̂(t, k). (1)

In this equation, the term with a divergence is responsible for a cascading transfer
of energy from large to small scales 3 4, and the term with H for the development
of fractional regularity of corresponding order. Linear transport of energy in fluids is
an effect first observed in the focusing of waves onto attractors which takes place in
rotating and stratified flows 5 6 and later described as the general effect of homoge-
neous operators of 0 order 3. A complete characterization of the solution is given: It
is smooth at any finite time, and converges to a fractional Gaussian field at infinite
time, up to smaller-order corrections. High-resolution spectral simulations of this
SPDE with added viscous dissipation are also performed, and their solutions reach
a stationary state in finite time which reproduces the asymptotic analytical results
for the power spectral density and increment statistics, with the development of a
self-similar inertial range between the forcing and dissipative scales.
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versity, 75005 Paris, France
1Apolinário et al., J. Stat. Phys. 186 15 (2022)
2Apolinário and Chevillard, Math. Eng. 5 1 (2023)
3Colin de Verdière and Saint-Raymond, Comm. Pur. Appl. Math. 73 421 (2020)
4Mattingly et al., Comm. Math. Phys. 276 189 (2007)
5Rieutord and Valdettaro, J. Fluid Mech. 341 77 (1997)
6Maas et al., Nature 388 557 (1997)


