Anomalous dissipation in turbulence

G. Zinchenko^{*} and J. Schumacher^{*}

The dissipative anomaly, which is sometimes referred to as the zeroth law of turbulence, states that the mean kinetic energy dissipation rate $\langle \epsilon \rangle$ in the bulk of a turbulent flow away from walls remains finite when the kinematic viscosity ν tends to zero. In the present work, we applied the analysis of Duchon and Robert¹ to the turbulent kinetic energy balance of a fully compressible turbulent flow. Next to the anomalous dissipation term D_{ε} which is given by

$$D_{\varepsilon} = \frac{1}{4} \int (\nabla \varphi^{\varepsilon} \cdot \delta \mathbf{u}) (\delta \mathbf{u})^2 \, d^3 \xi, \qquad (1)$$

in the incompressible convection case, we obtain additional contributions which arise from the velocity field divergence. Here, $\delta \mathbf{u}$ is the velocity increment in the ξ direction. An anomalous contribution to the energy balances implies that the integral (1) remains finite for the limit of $\varepsilon \to 0$. To calculate these terms in the balances, a continuous test function φ with a compact support is selected using the theory of wavelet transforms. We verified our approach for an analytical test case of an ensemble of Burgers vortices². This approach was suggested more than 20 years ago as a kinematic building block model for the turbulent cascade in three-dimensional homogeneous isotropic turbulence by Hatakeyama and Kambe³. The resulting dependence for the dissipation term with respect to ε is displayed in figure 1 (a) for a single vortex and the random ensemble in figure 1 (b). Clearly, D_{ε} has to vanish in these cases.

Figure 1: (a) Anomalous dissipation term for a single Burgers vortex for different filter scales ε , (b) same term in an ensemble of randomly strained Burgers vortices.

^{*}Institut für Thermo- und Fluiddynamik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany

¹Duchon and Robert, Nonlinearity $\mathbf{13}$, 249 (2000)

²Burgers, J. Adv. Appl. Mech. **1**, 171 (1948)

³Hatakeyama and Kambe, *Phys. Rev. Lett.* **79**, 1257 (1997)