Non-Gaussianity and incompressibility in turbulent relative dispersion

<u>B.J. Devenish</u>^{*†}, D.J. Thomson^{*}

The problem of turbulent relative dispersion is a classic problem in the study of turbulence and remains a topic of active research. Here we present a Lagrangian stochastic model (LSM) for the dispersion of particle pairs in three-dimensional homogeneous isotropic turbulence (HIT). The LSM is designed to satisfy both the 4/5 law of turbulence and a constraint imposed by incompressibility: in the inertial subrange of turbulence we expect $\overline{u_i a_i} = 3\left(\overline{u_{\parallel}^3} + \overline{u_{\parallel} u_p^2}\right)/(2r) = -2\varepsilon$ where **a** is the relative acceleration, u the relative velocity, u_{\parallel} and u'_p are respectively the longitudinal and absolute transverse components of u, r is the absolute separation between the particles, ε is the mean energy dissipation rate and an overbar represents an Eulerian average. Separating the joint distribution of u_{\parallel} and u_{p} into its two marginal distributions, as in Devenish & Thomson¹, is not consistent with the incompressibility constraint as then $\overline{u_{\parallel}u_p^2} = 0$. Instead the constraint can be satisfied by considering the probability density function (pdf) of u_{\parallel} conditional on u_p , $p_{u_{\parallel}|u_p}(u_{\parallel}|u_p)$, which we assume to be the product of a polynomial and a Gaussian. We will also need analytical expressions for the first three moments of u_{\parallel} conditional on u_p and the pdf of u_p , $p_{u_p}(u_p)$. These are based on data from a direct numerical simulation (DNS) of HIT but subject to the expected form of the first three unconditional moments in the inertial subrange i.e. $\overline{u_{\parallel}} = 0$, $\overline{u_{\parallel}^2} = C(\varepsilon r)^{2/3}$ (where C is the Kolmogorov constant), $\overline{u_{\parallel}^3} = (-4/5)\varepsilon r$ and $\overline{u_{\parallel}u_p^2} = -(8/15)\varepsilon r$. The DNS shows that, on average, smaller values of u_p are associated with small positive values of u_{\parallel} whereas larger values of u_p are associated with large negative values of u_{\parallel} . In addition, as u_p increases, the variation of u_{\parallel} about the mean increases and u_{\parallel} becomes more negatively skewed. Larger values of u_p tend to inhibit the separation of particle pairs. When $p_{u_{\parallel}|u_p}(u_{\parallel}|u_p)$ is integrated over $p_{u_p}(u_p)$ we find that the resulting unconditional pdf, $p_{u_{\parallel}}(u_{\parallel})$ agrees well with the DNS data even into the tails of the pdf. The wellmixed condition² provides a framework for determining the conditional acceleration given $p_{u_{\parallel}|u_p}(u_{\parallel}|u_p)$, $p_{u_p}(u_p)$ and the conditional moments of u_{\parallel} . It will be shown that transverse and longitudinal components of the conditional acceleration agree well with DNS data. A semi-empirical constraint on the well-known non-uniqueness problem² will be presented. Richardson's constant, the constant of proportionality in the well known t^3 -law for the mean-square separation of an ensemble of particle pairs, will be computed from the LSM for both forwards and backwards dispersion and shown to be consistent with previous results 3 4 5 6 .

^{*}Met Office, FitzRoy Road, Exeter, UK

[†]Dept of Civil Engineering, Imperial College, London

¹Devenish and Thomson, J. Fluid Mech. 867, 877 (2019).

²Thomson, J. Fluid Mech. **180**, 529 (1987).

³Berg et al., *Phys. Rev.* E **74**, 016304 (2006)

⁴Sawford and Yeung, *Flow Turb. Combust.* **85**, 345 (2010)

⁵Buaria et al, *Phys. Fluids* **27**, 105101 (2015)

⁶Bragg, Phys. Fluids **28**, 013305 (2016)