Wake behind a step cylinder from laminar to turbulent

C. Tian* J. Zhu* and L. E. Holmedal*

Cylindrical structures with abrupt changes in diameter, namely step cylinders, are widely used in various industrial applications, for example, risers with buoyancy elements and the hull of spar-offshore platforms. The abrupt cross-section change of a step cylinder causes more complex wakes than a uniform straight cylinder. By conducting direct numerical simulations (DNS) of flow around a single step cylinder with a diameter ratio $D / d=2$ (where d and D are the diameters of the small and large cylinder, respectively), we explore how the step cylinder wakes to transform from laminar to turbulent within the Reynolds number region $150 \leq R e \leq 3900$ (based on $D)$ and the corresponding variation of the structural loads.

An overview of the vortex structures in the step cylinder wakes at $R e=150,200$, 300 , and 3900 are shown in figures 1 (a), (b), (c), and (d), respectively. Overall, consistent with the publications ${ }^{12}$, mainly three spanwise vortices occur in the step cylinder wake. As $R e$ increases, more and more streamwise vortices form in the wake until the wake becomes fully turbulent. Results from an in-depth exploration of the wake dynamics and the correspondingly varying structural load utilizing fast Fourier transform, proper orthogonal decomposition, and wavelet analysis will be presented.

Figure 1: Vortex structures in the step cylinder wake visualized by the iso-surface of λ_{2} : (a) $\lambda_{2}=-0.05$ at $R e=150 ;$ (b) $\lambda_{2}=-0.1$ at $R e=200$; (c) $\lambda_{2}=-0.2$ at $R e=300$; (d) $\lambda_{2}=-0.5$ at $R e=3900$. The instantaneous cross-stream velocity v at the symmetry (x, z)-plane ($y / D=0$) is included to highlight the alternating pattern of the main vortices. The approximate extensions of the three vortex cells (S-, N-, and L-cell vortices) are indicated.

[^0]
[^0]: *Department of Marine Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
 ${ }^{1}$ Dunn and Tavoularis, J. Fluid Mech. 555, 409-437 (2006).
 ${ }^{2}$ Tian et al., Phys. Fluids 33,4 (2021).

