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Recent works on the hydrodynamic stability of supercritical fluids have revealed
the existence of a new unstable mode in boundary layer flows1. This mode was found
unstable in the inviscid limit and linked to the presence of a generalised inflection point
resulting from the peculiar properties of these fluids2. In the viscous regime, results
suggest that other destabilisation mechanisms are at play as larger growth rates are
observed for finite Reynolds numbers. However, no physical interpretation has yet
been given for this regime. The present work aims at gaining further understanding
on this matter by analysing the stability of a simpler problem and focusing on the role
of viscosity. A boundary layer developing over a heated flat-plate is considered. While
density is assumed constant, viscosity is chosen to vary with temperature following a
hyperbolic tangent law. This generates two regions of nearly constant but different
viscosities in the base flow that are connected by a region with a strong viscosity
gradient. Three parameters control the amplitude, the length scale and the location of
this viscosity gradient in the flow (noted ym). Linear stability calculations are carried
out, identifying different regimes of instability according to the value of ym. Two
distinct unstable Tollmien-Schlichting (TS) waves are identified, each of them being
associated with one region of constant viscosity. When the viscosity gradient is further
localised, an additional unstable mode appears, characterised by shorter wavelengths.
Compared to TS waves, its structure is concentrated in the neighbourhood of ym
(figure 1). We show that this instability is different from those developing in two-fluid
shear flows that feature a viscosity jump across their interface3, as viscous stresses
do not produce a positive work. Instead, we find that the energy transfer between
the base flow and the perturbations is driven by the mean shear. The analysis of the
complex phases sheds light on the associated mechanism.

Figure 1: Contours of the stream function of the slow TS wave (a) and the additional mode
with shorter wavelengths (b). The red dashed line indicates the location of ym.
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