Composition of resolvents enhanced by random sweeping for large-scale structures in turbulent channel flows

<u>Guowei He</u>^{*} and Ting Wu^{*}

Resolvent analysis has been developed mainly for spatial structures but rarely used for temporal statistics¹, since white-in-time models for nonlinear forcing lead to incorrect correlations in time^{2,3}. In this paper, composite resolvents⁴ are introduced to reproduce frequency spectra of large-scale structures in turbulent flows. The new developments are as follows: (1) composition of resolvents is proposed to avoid the direct action of white-in-time nonlinear forcing on velocity fields; (2) the randomsweeping effect is introduced to represent time decorrelations. The numerical results for turbulent channel flows are used to verify the composite sweeping-enhanced resolvents.

According to resolvent analysis, the Navier–Stokes equations are written as $\tilde{\boldsymbol{u}} = \boldsymbol{R}\tilde{\boldsymbol{F}}$, where \boldsymbol{u} is the velocity fluctuation, \boldsymbol{R} is the resolvent, \boldsymbol{F} is nonlinear forcing, and $\tilde{\cdot}$ denotes the space–time Fourier mode. The random sweeping effect of nonlinear forcing is represented by eddy damping, leading to a sweeping-enhanced resolvent \boldsymbol{R}_s . Furthermore, the remaining effects of nonlinear forcing, $\tilde{\boldsymbol{f}}$, is modelled as the output of \boldsymbol{R}_s from white-in-time input $\tilde{\boldsymbol{f}}_t$, that is, $\tilde{\boldsymbol{f}} = \boldsymbol{R}_s \tilde{\boldsymbol{f}}_t$. Therefore, the velocity fluctuation $\tilde{\boldsymbol{u}}$ is determined by the random forcing $\tilde{\boldsymbol{f}}_t$ through the composition of the sweeping-enhanced resolvent \boldsymbol{R}_s such that $\tilde{\boldsymbol{u}} = \boldsymbol{R}_s^2 \tilde{\boldsymbol{f}}_t$. The resulting \boldsymbol{R}_s^2 model correctly yields the frequency spectra (see Fig. 1), two-point cross-spectra and the characteristic decay timescales of large-scale structures in turbulent channel flows.

Figure 1: Frequency spectral distributions in the wall-normal direction, $\Phi(\mathbf{k}, \omega, y)/\Phi_I(\mathbf{k})$, at $\mathbf{k}h = (2, 4)$ for large-scale structures at $\operatorname{Re}_{\tau} = 550$. (a) DNS. (b) ν model. (c) \mathbf{R}_s^2 model.

^{*}The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

¹He et al., Annu. Rev. Fluid Mech. **49**, 51-70 (2017).

²Wu and He, *Phys. Rev. Fluids* **6**, 054602 (2021).

³Wu and He, *Phys. Rev. Fluids* **6**, 100504 (2021).

⁴Wu and He, J. Fluid Mech. **956**, A31 (2023).